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Abstract 

A preliminary design study of a conceptual 
6000-MW open-cycle gas-core nuclear rocket engine 
system was made. The engine has a thrust  of 
44 200 l b  and a specific impulse of 4400 sec. The 
nuclear f u e l  i s  uranium-235 and the propellant i s  
hydrogen. Cr i t i ca l  fuel  mass was calculated for  

'p several reactor configurations. Major components 
of the reactor ( ref lector ,  pressure vessel) and the 
waste heat reject ion system were considered con- 
ceptually and were sized. 

Introduction 

t e r i a l s  of construction, and hydrogcn tcnlperature 
and pressure i n  the cavity. Hydrogen temperature 
and pressure, though, are dependent orl eligine 
thrust, specif ic  impulse, and fue i  mass. Obvious'Ly, 
an i t e ra t ive  procedure i s  required t o  arrsve at a 
consistent s e t  of reactor conditions to  rw .dncri f o r  
component design. Additional constraints on tlre 
design include cavity w a l l  cooling l imits t ions an3 
pressure vessel strength limitations. 

This report w i l l  describe the open-cycle gas- 
core nuclear rocket engine, chronicle the design 
and give both the resu l t s  of t h i s  study. and rcco- 
mmendations f o r  future studies. 

The su i tab i l i ty  of an open-cycle gas-core 
nuclear rocket engine for  very f a s t  round t r i p s  t o  
nearby planets, e.g. the 80-day Mars courier, has 
been pointed out i n  Ref. 1. It was reported that  
fo r  engine thrust  ranging from 4500 t o  90 000 l b  
and engine pressures from 493 t o  1975 atm the 
maximum specif ic  impulse could be 2500 t o  6500 sec. 
These high specific impulses can be achieved only 
by disposing of the heat generated i n  the moderator 
due t o  the attenuation of gamma and neutron radi- 
ation. This waste heat i s  about 7 percent of the 
reactor power and can be disposed of with a space 
radiator.  

A number of conceptual, studies of an open- 
cycle gas-core reactor have been made but with only 
a cursory approach t o  component design.Ze4 The 
one study of the major components i s  f o r  a high 
thrust  (405 000 lb ) ,  low specific impulse (1730 
sec) engineY5 rather  than the low thrust ,  high 
specif ic  impulse reported herein. 

This paper chronicles the  preliminary design 
study of some of the major components (moderator, 
pressure vessel, and heat reject ion system) of an 
open-cycle gas-core reactor system. The thermo- 
dpamic and f l u i d  dynamic phenomena associated with 
the gas-core rocket react01 concept were accepted 
a s  a basis  f o r  t h i s  study. Only steady s t a t e  
operation conditions were considered. A goal of 
the study i s  t o  make a f i rs t -order  approach to de- 
sign and sizing of several major components, and 
t o  make weight estimates of these components. 

There i s  no "best" engine a t  present but rath- 
e r  a range of engine parameters from which one can 
select  the best engine f o r  a par t icular  mission. 
For the design study a 44 200 l b  thrust,  4400 sec 
impulse, 6000 MW engine with a hydrogen propellant 
flow r a t e  of 10 lb/sec was selected. The reactor 
configuration i s  assumed t o  be a spherical cavity 
surrounded by a reflector-moderator and a pressure 
shel l .  The reflector-moderator i s  cooled by an 
jnert  gas and the heat i s  rejected t o  space by an 
external gas radiator.  

Of primary concern i n  the design of the 
yeactor i s  the calculation of the c r i t i c a l  fue l  
.la A ~ e y u ~ r c c i  to  operate the reactor. I h i ~   alln not 
be calculated directly, however, because ~ r l t i c a l  
rn,~::; i:: dependent on reactor. confiyuration, ma- 

Description of Engine 

The major components of the enginc ~yslem are 
shown schematically i n  Fig. 1 ,  In t h i s  des,&n 
study the emphasis was placed on the reactor compo- 
nents (reflector-moderator, presswe vessel, ?LC) 
and the waste heat reject ion sys tern (space radio tor, 
intermediate heat exchanger). These components w i l l  
be discussed i n  d e t a i l  i n  l a t e r  sections, 

The proposed reactor shown i n  Fig. 2 1s spher- 
i c a l  i n  shape and i s  composed mainly of a trtanlum 
al loy (Ti-6A1-4V) pressure shel l ,  a bery3A.m oxide 
reflector-moderator and a porous or sloLued cavl tgr 
l ine r .  A section of the reactor i s  shown in Flg. 3. 
The sketch shows the uranium plasma, the hydrogerl 
propellant flow area, the reactor components and 
the various flow passages. The cooling passages *n 
the ref lector  moderator are  t o  remove 7 percent o r  
the reactor power which i s  deposited by [,he aiteii- 
uation of high-energy gama and neutron radiation, 
The uranium plasma i s  fissioning uranium enriched 
t o  98 percent U-235. 

The 7 percent of t o t a l  reactor power ~ i h i d h  ss  I 

removed from the reflector-moderator must be re- 
jected by the waste heat system. There are two 
types of systems being considered. The f i r s t  sy2- 
tem consists of a helium gas radiator  whiclr oper- 
a tes  a t  the same pressure l eve l  as the c?vrty. :11c 
helium which cools the reflector-moderator and 
carr ies  the heat direct ly  t o  the high prcssvre 
radiator .  In the second system the high aressure 
helium carr ies  the heat from the ref lector-  
moderator through the tubes of a shel l  and tube 
heat exchanger where the heat i s  t ransfelred to  a 
low pressure l iqu id  metal such as llthium. The 
lithium i s  then pumped t o  a spacc r a b a t o r  where 
the heat i s  rejected. The choice of ~~liiilscli sjstcm 
t o  use depends on factors  such as  weieht and ease 
of fabrication. 

There are  other components whlcli 7ir;the lip Llic 
engine which have not received mucli ~ L ~ L L I  L I O ~ ?  i i  tile 
present design study. They are  the ppropcUanL 
storace tank, hydrogen turbopump , , ~ ~ c m ,  Iryw o,c7l- 
seed system, uranium storage and iirjectstn sy~lc r l ,  
the porous cavity l iner ,  the react ivi ty  i sn i ro l  
system, shielding, and the rocket nozzle. Lsi,tLc 
can be donc t o  design thccce con~porie?t~ wil il  ill^ 
operatin:; condition:: and ,ize of Lbc Ieai Lo' ~ C , t l  i 



Cri t i ca l i ty  Calculations 

A design procedure was developed t o  determine 
the fue l  mass and propellant pressure required f o r  
a reactor configuration composed of any combination 
of cavity diameter, reflector-moderator tliiclu:eub, 
and mount of s t ructural  material contained i n  the 
ref lector .  Ancillary data from the c r i t i c a l i t y  
CIZ;CUI~CLO,IS are  presented i l l  the Tor~n oi: i'li~, 

spectra and react ivi ty  e f fec t s ,  

!&sii?;n Frocedure 

In  a gas-core reactor, fue l  mass and propel- 
Lant chamber pressure are mutually dependent. 
Pressure as  a function of f l u i d  dynamics and heat- 
transfer phenomena was derived by ~agsdale . '  

N$.385F0.38310.383 
P = 14.6 sp 

(1) 
~:.54(v,/v,)~-51 

where 
?? = pressure i n  reactor cavity, atm 
M = fuelmass, kg 
F = thrust ,  lbf  
1 = specif ic  impulse, sec 
I), = cavity diameter, f t  
Vp/VC = volume fract ion of f i e 1  i n  the cavity 

In  addition, the fue l  mass must a t t a i n  nuclear 
c r ~ t i c a l i t y  as  represented by:6 

where 

Mc = c r i t i c a l  mass, kg 

Mrref) = c r i t i c a l  mass of reference 
model, kg (f ig .  4) 

R = re la t ive  c r i t i c a l  mass in- 
crease caused by inclusion of 
separated molybdenum (greater  
than 98 percent bIog8 and 
~ d . 0 0 )  as  s t ructural  ma- 
terial. (coolant tubes) i n  the 
ref lector  

percent (p2Ss) = reac t iv i ty  worth of hydrogen 
pressure, percent ( f ig .  5 )  

= react ivi ty  worth of hydrogen 
k temperature, percent ( table  I) 

@M = reciprocal of specific fuel  

percent Dk. reac t iv i ty  worht, &/percent 
k ( f ig .  7) 

Reactor uesign conditions must sa t i s fy  both 
Cqs, (1) and (2) in  order t o  have a c r i t i c a l  fue l  
1 3 a d ~ n ~  Lhat can be contained by the coaxial flow 
of the hydro6:en propellant. 

Cdlcdation of the react ivi ty  e f fec t s  re- 
qurred in Eq. ( 2 )  ha:: been reported i n  d e t a i l  i n  
iicf . r ,  tlnd therefore w i l l  only be summarized here. 
TLcferev~ce rnoiicl (hydrogen propellant a t  19 100' R 
and 400 d t m ,  dnd a fuel  volume fract ion of 0.4) 

calculations were made using the neutron transport 
code T R S N ~  with spherical geometry. A ser ies  of 
calculations were performed for  cavity diameters of 
10 f t ,  12 f t ,  and 14 f t  and ref lector  thicknesses 
of 1 .5 f t ,  2 f t ,  and 2.5 f t  which show c r i t i c a l  
mass increasing with increasing diameter arid de- 
creasing ref lector  thickness ( f ig .  4).  Relative 
c r i t ~ c a l  mass increase as  a function of volume 
percent s t ructural  material contained i n  the re- 
f l ec tor  was shown t o  be nearly independe~t of 
cdvity diameter dnd rci'lector t11~cKriess.~ This 
allowed a single correlation t o  be applicable t o  
all configurations considered herein. A t  3.035 
volume percent Mo the re la t ive  c r i t i c a l  mass in- 
crease (R) was 0.63 and a t  6.07 volume percent Mo 
it was 1.68. For calculational use these data can 
be represented by Eq. (3)  

R = 0.208/$ Mo for  Mo 5 3% 

R = 0,346/$ Mo for  576 < Mo < 6% } (5)  

The extreme sensi t ivi ty  of c r i t i c a l i t y  i n  the gas- 
core reactor t o  neutron absorbers necessitated the 
use of Mo which was isotopically separated t o  ob- 
t a i n  a product containing greater than 98 percent 
~ 0 9 8  and ~ 0 ~ 0 0 .  Structural material. i s  required , 

i n  the ref lector  fo r  coolant tubes which would be 
constructed of the Mo al loy TZM. Effect of pres- 
sure on c r i t i c a l i t y  fo r  the reference reactor con- 
figurations i s  shown i n  Fig. 5. The rate  of 
change of react ivi ty  worth with pressure increases 
as diameter increases because the thickness of 
hydrogen i n  the cavity also increases with diam- 
e te r .  For calculational ease the reference model 
was assumed t o  have a constant temperature hydro- 
gen propellant region whereas i n  an operating 
engine a gradient ex i s t s  from the fuel-hydrogen 
interface t o  the cavity w a l l .  A be t te r  analyt ical  
representation was attempted by assuming f ive  hy- 
drogen zones with temperatures varying from 7500° 
t o  40 OOoO R ( f ig .  6 ) .  The difference i n  reac- 
t i v i t y  was -0.25 percent &/k fo r  a 10 f t  diameter 
configuration and -0.50 percent Ak/k f o r  a 12 f t  
diameter configuration co able 1 ) .  The 14 f t  diam- 
e t e r  configwar;ion was assumed t o  have a -0.70 
percent &/k hydrogen temperature dis t r ibut ion 
worth. These values were assumed constant f o r  all 
cavity pressures. 

To compensate for  negative react ivi ty  of the 
hydrogen pressure and temperature, fue l  mass i s  in- 
creased. Fuel react ivi ty  worths are plot ted i n  
Fig. 7 f o r  10 f t ,  12 f t ,  and 1 4  f t  diameter reactor 
configurations. Decreasing fuel  worth per uni t  
mass with increasing fue l  loading i s  a t t r ibuted 
t o  increasing se l f  shielding effect  within the 
plasma b a l l  and decreasing re la t ive  mass change 
per uni t  mass addition. 

To determine the required Luel mass and pro- 
pellant pressure fo r  a par t icular  confieuration, 
appropriate values are  selected for   ref) from 
Fig. 4, R from Eq. (3), perce t Ak/k ( t g P )  from 
Table I, and percent ok/k (p$ir) from Frg. 5 fo r  
an estimated cavity pressure. The required f u e l  
addition Lo corvpevisate f o r  the negative rcact,ivity 
i s  determined from Fig. 7 and solution of Eq. ( 2 )  
follows. I f  t h i s  agrees with the prccsure from 
Eq. ( l ) ,  a ~olui , ion has been ol~tained. Otherwise 
the c ~ t i n a t e d  pressurc rriust be i t e ra ted  u n t i l  con- 
cis tent  vali~e:: fo r  14y and P itrc obtained. 

Calcd&tiorircl r c ~ u l l s  are s m r i r e d  in  Fi;:. 8 



for reactors  which sa t i s fy  both f lu id  dynamic and and 10 f t ,  respectively ( f ig .  l o ) ,  The-e values 
c r i t i c a l i t y  operating conditions. However these establ ish the upper l imi t s  f o r  the fuel  Loading 
designs have no s tructural  material i n  the re- curves presented i n  Figs. 8 and 9, 
f l ec tor .  As the fue l  requirement f o r  c r i t i c a l i t y  
i s  increased by a reduction of ref lector  thickness, Core Characteristics 
the negative react ivi ty  of the additional hydrogen 
associated with t h a t  increased fue l  loading Both total. and f a s t  (energy greater ihan 5 fificV) 
( ~ q .  (1))  necessitates t h a t  even more fue l  be f lux leve l s  throughout a reactor are l i s ~ e d  in 
added. The resu l t  i s  a rapidliy increasing fue l  Table 2. These data indicate the spectral  s h i f t  
loadirig (and hydrogen pressure) as  ref lector  thiclc- f'rom a f a s t  core region t o  a more they. L I L Z C L  i( - 
ness i s  decreased. Similarly the smaller diameter f l cc tor  region. Also, of in te res t  i s  the nearly 
c ~ n f i g ~ a t i o n s ,  which have higher pressure levels ,  constant f lux leve l  through the core. I h ~ s  r n d ~ -  
are  more sensitive t o  changes in  ref lector  thick- cates that  the fue l  i s  suff icient ly a i h l ~ e  :liab 
ness. Comparison with constant pressure resu l t s  self  shielding does not appear t o  he i n u p o r t ~ ~ t  3n 
i n  Fig. 4 indicates the importance t o  the design the core a t  expected fuel  loadingc (fig. 0 ) .  
calculations of accurately determining the hydrogen These f lux data are useful i n  calculatirr:  radialLou, 
pressure i n  an operating engine. exposure damage to materials. Howevcr, . ~ t  shoulct 

be noted that  the data are  sensitive t o  both renc- 
When separated Mo i s  added t o  the ref lector  t o r  materials and geometry and 'chat the values 11 

( t o  simulate s t ructural  material),  a significant Table 2 are fo r  a specif ic  configmatior.  
increase i n  c r i t i c a l  fue l  loading occurs ( f ig .  9 ) .  
Neutron absorption i n  the Mo increases the c r i t i c a l  Another indication of the flux spec~rum i n  
fuel  requirement which i n  turn requires a higher these high temperature a s - c o r e  reactors i s  +.he 
hydrogen pressure t o  contain the higher fuel  load- median f iss ion energy, gf. The configmation c d -  
ing . culated i n  th i s  s t u m  Ef varied from C.2 t o  

0.7 eV. Previous calculations and experiments on 
In an e f for t  t o  reduce fue l  mass and propel- t h i s  type reactor had indicated reactor :I.uxcs 1 o 

l a n t  pressure (and, therefore reactor weight), have a more thermalized Slur. spectrun . _hss 
uranium-233 was substituted for  U-235 fuel  i n  the spectral change i s  a t t r ibuted t o  the presence of 
reactor configuration of 14 f t  cavity diameter and high temperature hydrogen gas ( i n  the hi& impmpce 
2 f t  ref lector  thickness with 1.9 percent Mo i n  the design) which i s  located between the fuel  and the 
ref lector .  Fuel mass was reduced from 107.7 t o  ref lector .  Neutrons which are thermali~ed 111 l he  
32.9 kg and hydrogen propellant pressure from 550 ref lector  region represent the principal source of 
t o  105 atm. This effect  can be u t i l i zed  i n  the de- f iss ion and these must pass througil the bydro~eil 
sign t o  reduce reactor size and/or increase the region before reaching the fuel.  Since ihe hydro- 
amount of s t ructural  material. gen atoms have energies considerably i n  o c e s s  of 

most of these neutrons ( fo r  example, a t  19 000' R 
Several items which could effect the neutron- the hydrogen atoms has a most probable energy of 

i c s  design calculations and which were not in-  0.91 eV and an average energy of 1.36 eV), scat ler-  
cluded i n  t h i s  analysis are f iss ion product build- ing coUisions tend t o  increase the energy of .rile 
up i n  the core, s t ructural  material i n  the cavity neutrons. This upscattering effect  hardens the 
l iner ,  f u e l  di lut ion by the propellant and varia- low energy spectrum of neutrons entering the core. 
t ions of fuel  t o  cavity diameter ra t io .  No attempt This reduces c r i t i c a l i t y  because the ra t so  of 
i s  mde t o  assign any re la t ive  significance t o  capture t o  f i s s ion  cross section or 'iT-2.i5 c?ecreace- 
these but they should be considered when a more i n  the epithermal energy range (compared io lower 
defini t ive study i s  desired. energies).  This upscattering effect  (decreaseii 

react ivi ty  i s  direct ly  related t o  hydropen temp"*- 
Maximum Propellant Pressure ature and therefore w i l l  become ~ncreasmgly  Impor- 

tant  fo r  higher impulse engine desrgns. Srnce the 
Based on Eq. (1) f o r  a e f fec t  on c r i t i c a l i t y  i s  a lso a functioli of fuei  

thrust,  specific impulse, an ion, cross sections, engine designs witl? other fuels  
there i s  a hydrogen pressure required t o  contain may react differently. 
that  &%el mass i n  a gas-core reactor. Cr i t i ca l i ty  
depends on the positive react ivi ty  worth of the 

- 

fue l  l e s s  the negative react ivi ty  worth of the hy- 
drogen propellant. For a given cavity diameter 
specific f u e l  worth decreases with increased load- 
ing (f ig .  7). However, the negative react ivi ty  
worth of hydrogen per unit of pressure i s  nearly 
constant up to  1200 atm. Therefore, the net worth 
of fuel  plus hydrogen decreases with increased 
fuel  loading. In fact ,  t h i s  net worth becomes 
negative a t  come fucl  loading. The pressure cor- 
responding t o  that  fue l  loading i s  the maximum 
pressure (or fuel  loading) a t  which the reactor 
can be made critical. I f  any additional fuel  i s  
added, tlic hyc1royc:l prezsure increase required for 
f l u i d  dynamic s t a b i l i t y  would make the reactor 
nubcritical.  For the configuration i n  t h i s  study 
( th rus t  = 44 200 1 L  npecii'ic impulse = 4400 sec, 
fucl  volme fract ion = 0.3) the limi t i n e  pressure 
tra:: rletennilicd + o  be 620 atm, G80 atm, and 720 * ~ t m  
Sor re,>~.tor. ,  with cavity diameter; of 14 f t ,  1(' f t ,  

Moderator Design 

Requirements 

The moderator-reflector i s  required to tber-  
malize and return rieutrons t o  the reactor corc to 
provide the source for  next generation isseions. 
About 7 percent of the reactor pomr w l ? l  be Lr- 
posited i n  the ref lector  so i t  nust a l s o  scrve sr 
a heat exchanger to  t ransfer  t h l s  heat o a raosd- 
t o r  fo r  disposal. In order t o  ~nsnimrzc radiator 
size it  i s  important t o  operate Lllc re i i ec tor  ?t 
as  high a temperature as  posriblc. The~-ehor,  
Be0 T T ~ S  :elected as  the p r i n c ~ p a l  11 a1 cr~d.1 o i  co I- 
s t r u ~ t i o n  because of i t s  superiov nuileal ! ~ o p k r -  
t i e r  and high temperaturc capabbil~ry. i.Lduce or 
the extreme sensi t ivi ty  of gas-core c r l  I L L ~ L L ~  
t o  neutron abcorption extcrnd t o  LIIL i it, 

11ucle;tr concider,xLloli; tool, prcccdlnc c ~ - \ ~ c v  I T L ~  - 
driical ,lid piiysicil ~ ) lo l>cr t l e ;  n m:cl I J L  c 1 C - 



Since Be0 i s  a ceramic and therefore limited 
i n  mechanical application, the use of a s t ructural  
mterial.  w i l l  be required for  heat exchange tubes, 
c o n t a i m x ~ t ,  e tc .  For t h i s  purpose, a molybdenum 
al loy TLl w i l l  be used. The Mo w i l l  be isotop- 
i c a l l y  se arated t o  greater than 98 percent ~0~~ 

plus i4&0~ t o  reduce neutron absorption. Low 
neutron absorption, material compatibility, and 
good heat-transfer properties l e d  t o  the selection 
of lielium (He) as  the coolant. 

Two methods of operating the heat exchanger 
have been considered, each with i t s  par t icular  ad- 
vantages. A low pressure system would u t i l i z e  a 
low coolant pressure contrasted with a high cavity 
pressure In the reactor. This system reduces com- 
plexity and weight of the radiator and the coolant 
t ransfer  l ines  and pumps. A high pressure system 
bas the coolant a t  the same pressure as  the pro- 
pellant (reactor cavity) i n  order t o  reduce tube 
thscimess a d  therefore s t ructural  material. 

The helium i n l e t  temperature t o  the moilerator 
was set  st 2300' R with the out let  temperature se t  
st 2500' H. The resul t ing helium temperature 
change of 200' R requires a flow r a t e  of 1596 lb /  
sec t o  remove the 420 MI< of energy deposited i n  
the moderator by the attenuation of high energy 
gama arid neutron radiation. 

The design which has been used i n  th i s  study 
LS shown :n Flg. 11. In t h i s  design the helium 
coolant flows through passages formed by two con- 
centr ic  tubes arranged i n  triangular array. The 
outer tube 1s TZM and the inner tube i s  made of 
BeQ. Tke two tubes can expand and contract inde- 
pemiently thereby minimizing the- s t resses  i n  
$he tubes, Thermsl s t ress  i n  the Be0 can be mini- 
mized by using the modular arrangement shown i n  
FI&, S-L. Thermal. f racture of some of the hexagonal 
EeO blocks w i l l  not impair the s t ructural  integ- 
r i t y  of the re f lec tor  because they are  locked i n  
place m !;be design. The porous cavity l i n e r  and 
hyikoger propellant flow passage are shown In 
Fig. ZL. The manifold can be fabricated of ordi- 
nary TZM since it  i s  outside of the moderator and 
wrU have no e f fec t  on the neutronics of the re-  
ae Lor. 

The density of the Be0 moderator used i n  the 
nucleus c:ilculations was reduced by the proper 
.mount t o  account fo r  the void spaces required by 
thc moderator coolant passages. The effect  of 
rie~vtron screaming through these passages was ne- 
$ l c c ~ c d ,  

The principal e f fec t  of neutron i rradiat ion 
on Be0 i s  volume expansion, with associated micro- 
crackrng, which resu l t s  from atom displacement and 
ixom hel~um gas generation. Experimental. data a t  
2~00' R mdicate that  Be0 can withstand neutron 
Coves of '3x10~1 IV/cm2 wlth l ~ t t l e  or no micro- 
c r x k , n ,  ,gd. a t o t a l  volume expansion of 3 to  
; per cnt,, Strength tends t o  increase u n t i l  
x u  c i  ocrsc ,:Lne occurc and then clecrea-ec t E i t i l  

ra , iurc .  Thermal conductivity exhibited a 7 per- 
,crrt ,iecxca;e a f t e r  i r rad ia t ion  to  2 . 5 ~ 1 0 ~ ~  ii/cmr? 
a 2  2,30" ,. 

Radiation damage e f fec t s  i n  TZM tend t o  be 
annealed out a t  the operating temperature i n  the 
ref lector .  Data on material t es teg  a t  2450' R 
a f t e r  i r radiat ion t o  2 . 4 ~ 1 0 ~ ~  N/cm indicated about 
a 10 percent increase i n  y ie ld  strength and 30 per- 
cent decrease i n  t o t a l  elongation.1° 

Reactor operating time for  a Mars round t r i p  
should be about 8 x 1 0 ~  sec. With f a s t  f l u x  values 
(radiat ion damage mechanisms are f a s t  neutron 
phenomena) from Table 2, the maximum dose t o  the 
ref lector  should be about 1 . 5 ~ l 0 ~ ~  ~ / c m ~  per t r i p .  
Thus it appears that  multiple t r i p s  could be com- 
pleted before the dose l imi t  of Be0 i s  reached, 
whereas insuff icient  data are  available t o  evaluate 
TZM behav~or i n  tha t  dose range. 

Coolant Tubes 

Calculations of possible coolant tube arrange- 
ments were performed primarily t o  determine i f  
cooling of the ref lector  might present any special. 
problems. Also of in te res t  was the approximate 
amount of tube material. (TZM) required because of 
the importance of structural material. t o  c r i t i c a l  
mass determination. Thus, only nommal resu l t s  
were obtained f o r  a system with low coolant pres- 
sure (5  atm) and a system with the coolant pressure 
equal t o  reactor pressure a t  400 atm. No attempt 
was made t o  optimize the tube design. Bincipal.  
c r i t e r i a  were that  the maximum temperature i n  the 
Be0 ref lector  not exceed about 3500' R and that  the 
coolant pressure drop be about 15 atm or l ess .  
Tube w a l l  thickness was based on the creep collapse 
c r i t e r ion  developed by Richard Morris of Lewis 
Research Center f o r  1000 hours operating a t  2 0 0 0 ~  F. 
Tube spacing was selected as  a Compromise between 
fract ion of s t ructural  material, i n  the ref lector  
and thermal s t resses  resul t ing from radial  temper- 
ature gradients. 

The a n d y t i c a l  model assuned the coaxial tube 
design with tube centerlines located on spherical. 
r a d i i  through the ref lector .  The outer tube i s  
constructed with TZM and the inner tube (which has 
essent ial ly  no pressure d i f fe ren t ia l  across i t s  
wall) i s  of BeO. Tubes were arranged i n  a tri- 
angular l a t t i c e .  Standard heat conduction and 
convection equations were used t o  obtain the data 
l i s t e d  i n  Table 3. These data indicate that  vol- 
ume fract ion for  s t ructural  material, of up t o  
about 0.05 would be the range of in te res t  and 
coolant volume fractions w i l l  be around 0.05 t o  
0.1. I n i t i a l  estimations of radial. s t resses  from 
thermal gradients which were made using Ref. 13 
indicated tha t  Be0 l imi t s  would be exceeded. The 
s i tuat ion could be al leviated somewhat by the use 
of zircoriiwr~ LeryLlide, ZrBel3, which has higher 
heat-transfer and strength properties than Be0 a t  
temperatures of interest ,  2 0 0 0 ~  t o  3 0 0 0 ~  R . ~ ~  

Pressure Vessel 

The reactor i s  contalned i n  a pressure vessel 
which rriust be able t o  irlthstand the cavity pres- 
sure. The material shouid be compatible wlth hy- 
drogen st pressures up to about 680 atm and tem- 
peratures t o  about 72O0 R. Also a hlgh strength 
Lo w e ~ ~ l i i  r a t l o  i s  part~cCLarly rcqulred for  thks 
app l ica i~on  becau-e the pressure vessel repre- 
seni; 3 ,~{:riiT~cant p o r t ~ o n  of the i o t d  ;y;tc!n 
rrci;-II? . 



Titanium alloys qualif'y as  unique metals fo r  the two systems are  shown i n  Table 4 and are f o r  
aerospace constuction, mainly because of t h e i r  high four radiators i n  the single-loop system and four 
strength and low density. The titanium alloy used radiators  and four heat exchangers i n  the two loop 
i n  t h i s  design study i s  annealed Ti-6Al-4V. This system. 
part icular  a l loy was used both because of i t s  prop- 
e r t i e s  and of the state-of-the a r t  of fabricating Radiator weight was observed t o  be quite sen- 
large pressure vessels of t h i s  material. A s i t i v e  t o  pressure level .  The radiator i n  the one 
7 f% diameter hemispherical head of Ti-6U-4V with loop system with a gas coolant a t  680 s t m  was 
4 in .  thick wall has been hot pressed for  the De- almost twice a s  heavy as the radlator (l,Llisurn a l  
partment of the Navy. 194 atm) i n  the two loop system even ihougb i t s  

surface temperature was 150' R hlglier , Iiowever, 
The ultimate and y ie ld  s t ress  fo r  annealed the additional heat exchangers requred  In the two 

Ti-6A1-4V was taken from Ref. 13. The allowable loop system led  t o  essent ial ly  the same Lotal 
s t ress  i s  the ultimate s t ress  divided by a factor  weights f o r  the two heat reject ion systems. Thus, 
of safety of 2, and i s  65 000 ps i  a t  the operating system selection should be on same basss other 

rature of about 530' R. Reference 14 con- than weight, e. g., mechanical complex1 ty. 
d tha t  there i s  no embrittlement of un- 
ed Ti-6-41-4V specimens by 680 atm hydrogen a t  Data i n  Table 4 are representative of a reac- 
temperature. Based on f lux values from t o r  design with a propellant pressure (and there- 

Table 2, radiation damage t o  the titanium i s  of fore primary coolant of 680 aim. 1%: 
l i t t l e  consequence. An exposure of 2x10~7 N/ designs a t  other pressures the weight of the gas 
em2 se t  (100 Mars t r i p s )  causes very l i t t l e  e f fec t  pressure bearing components was scaled dlrect ly  
on material properties.15 with pressure level .  

System Wei~:h& 
The w a l l  thickness, t, of the spherical pres- 

sure vessel can be calculated with the relat ion One basis fo r  selection of majoi- componenLs ss 

P D 
weight minimization of the t o t a l  system. Only tbc 

t = W  moderator-reflector, pressure shell,  and radr,itor 
4SAE (4) were considered i n  t h i s  analysis because the 

weight contribution of a l l  other components (pumps, 
where % i s  the maximum allowable working pres- structure, piping, e tc . )  was assumed smnall enough 
sure, D i s  the inside diameter of the sphere, not t o  e f fec t  the resul ts .  
SA i s  the allowable s t ress ,  and E i s  the weld 
efficiency (taken a s  0.9). The Ti-6A.l-4V material For a given cavity diameter, pressure varles 
i s  assumed t o  be i n  the annealed condition and a t  inversely with reflector-moderator *de~i;ht. Both 
room temperature. pressure she l l  and radiator weight vary direci ly  

with pressure. The net resul t  of pressure on sys- 
A weight estimate was made for  a pres- tem weight i s  shown i n  Fig. 12 for  eavzty d i m -  

e vessel with a diameter of 19 f t .  With T i -  e t e r s  of 10 f t ,  12 f t ,  and 1 4  f t .  
-4V as  the material of construction and a 10 000 
1 design pressure, the w a l l  thickness would be Cavity pressure i s  a function of fuel  mass 
in. and the wei&t about 245 000 lb.  which i n  turn depends on the r e f l e c t ~ v ~ t y  of the 

reflector-moderator. For the case of no s t r u e t u r d  
Qual i ta t ive consideration was given t o  the material i n  the Be0 reflector-moderator, re-  

possibi l i ty  of excessive heating i n  the vessel f l e c t i v i t y  i s  determined by reflector-moderator 
walls resulting from gamm ray absorption. I f  ex- thickness. Thus, f o r  a given cavlty diameter, a t  
cessive temperatures should occur, the walls could low pressures the reflector-moderator becomes e,x- 
be laminated and cooled with hydrogen. cessively heavy (or  thick) and a t  high pressures 

the radiator plus pressure she l l  become exce s s s ~ - $ l y  
Waste Heat Redection Systems heavy. Somewhere i n  between, the tradeof f betweeii 

pressure and reflector-moderator thickness resui te  
The two candidate heat reject ion systems con- i n  a minimum weight. It i s  i n t e r e s t ~ n g  t o  note 

sidered were a single-loop helium coolant system that  the larger  reactors have lower minmun weights 
and a two-loop, helium gas and secondary lithium ( f ig .  12). This resul ts  from the fac t  LhaL the 

quid metal coolant with an intermediate heat- e f fec t  of lower pressure on radjlator plus pressure 
changer system. The helium moderator coolant vessel weight tends t o  override the effect  of 
ow ra te  must be 1596 lb/sec t o  remove 420 MW of l a rger  dimensions on weight. 

ea t  with a 200' R temperature r ise .  In both sys- 
tems the helium gas i s  operated a t  the same pres- Component weights f o r  the minmum tjright con- 
sure as  the propellant i n  order t o  minimize figurations are itemized i n  Table 5. I n  nU. cases 
s t resses  i n  the coolant tubing of the ref lector-  the heaviest component i s  the radsaLor which rep- 
moderator. A riominal value of 10 000 p s i  was se- resents 40 t o  50 percent of the t o t d ,  The rela-  
lected for  the calculations. In the sin@e loop t ive importance of the various component weights 
system the radiator i s  designed t o  contain the high as  a function of pressure i s  shown In _ I I ~ .  Is w1tlr 
pressure gas. In the two-loop system the radiator the reflector-moderator dominant a t  lower ore:-- 
i s  designed for  low pressure l iqu id  metal. sure and the radiator a t  higher pressure. 

Because of the large heat reject ion require- For an operating engine, the weights in  Z I ? ,  1) 
mcnt, it was dccided t o  carry out calculations for and Table 5 arc ulderpredicted because Lhc L ~ V I L Y  
four radiators (and four heat exchangers i n  the l i n e r  and t l ~  reflector-moderator were A--w,c ! I o 
two-loop system), each one-fourth the t o t a l  size lie only Leo. As i~idicated ~n C r ~ t i c a l ~ L y  I ~ 1 , d n -  
required. 'The temperatures, areas, and weif~ht:. of L j  ons, fuel  mass (and therefore c a v ~ t y  _ni c c  i~ rc )  

i s  extremely sensitive to  the pre.cnLc ,f all) 

t, 
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Mul t ip l i ca t ion  constant  

Absorptions i n  cav i ty  H .OX27 I .0133 
region per  source neutron 

Median f i s s i o n  energy, eV 

Ratio of neutron captures  t o  
f i s s i o n s  i n  fue led  region 

Reac t iv i ty  worth of zoning, I -.25 
percent  Ak/k ( H  temp) 

*Temperature corresponding t o  average H dens i ty  i n  cavi ty.  

Cavity diameter = 10 f t  
Ref lec to r  thickness = 2.0 f t  

.36 

.227 

TABLE 1 EFE'ECT OF HYDROGEN DISTRIBUTION OF CORE PROPERTIES 

H zone a t  19 000' R 
average temperatureX 

0.9995 

H separated i n t c  
zones on Fig. 6 

0.9970 

TABLE 2 FLUX LEVELS LN A 6000 MW GAS-CORE REACTOR WIT11 A 
CAVITY DWI 'ER OF 1 4  FT AND A REFLECTOR THICiCNESS OF 2 1.T 

Location 

Core cen te r  

Fuel-propel lant  i n t e r f a c e  

Propel lant-cavi ty l i n e r  
in te r face  

Inner edge of r e f l e c t o r -  
moderator 

Outer edge of r e f l e c t o r -  
moderator 

Inner edge of  pressure 
s h e l l  

Outer edge of  pressure 
s h e l l  

TABLE 3 NOMINAL REFLECTOR COOLANT TUBE ARRANGEMENT E'OR 
THE FOLLOWING REACTOR CONE'IGUBATION: CAVITY 
DLQBTER = 1 4  FT, REFLECTOR TIIICKNESS = 2 IT, 

PROPELLAW WJSSIIRE - 400 ATP 

Fast  f l u x  
E > 0.5 MeV 

~ , l c m ~  sec 

5.2x1015 

3. 5x1015 

2.1x10L5 

1 . 8 ~ 1 0 ~ ~  

1 . 2 ~ 1 0 ~ ~  

2 . 4 ~ 1 0 ~ ~  

5 .4~10 '  

Outer tube (TZM) od 
i d  

Inner  tube (BeO) od 
i d  

Tube p i t c h  
Outer r e f l e c t o r  surface 
Inner  r e f l e c t o r  surface 

Number of coolant passages 

Heat t r a n s f e r  a r e a  

Frictional. pressure drop 

Maximum r e f l e c t o r  temperatinen 

Reflector  volume f r a c t i o n  
Coolant 
Outer tube 

Flow f lux  
E < 0.12 eV 

~ / c m ~  sec  

1. l u l 0 l 4  

1. 4 x 1 0 ~ ~  

1 . 1 ~ 1 0 ' ~  

1 . 8 ~ 1 0 ~ ~  

9 .1f i014 

5 . 1 ~ 1 0 ~ ~  

8.7~10" 

'Based on an assumed peak-to-average value of 10 f o r  
heat  deposi t ion near  the inner  edge of the  re -  
f l e c t o r .  

0 . 5  i n .  
0 . 4 i n .  

0.311 i n .  
0 .251 in. 

1 . 5  i n .  
1.188 i n .  

75 100 

19 700 f t 2  

214 p s i  

3500' R 

0.062 
0.046 

Tota l  f lux  
~ / c m ~  sec 

1 . 7 ~ 1 0 ~ ~  

1 . 6 ~ 1 0 ~ ~  

1 . 8 ~ 1 0 ' ~  

1 . 8 ~ 1 0 ~ ~  

4 . 3 ~ 1 0 ' ~  

2 . 9 ~ 1 0 ~ ~  

3.7~10" 

0 .5  i n .  
0 . 4 6 ~ 1 .  

0.352 i n .  
0.292 ~ n .  

1 .5 i n .  
1.188 i n .  

75 100 

19 700 it2 

1 . 3  ps i  

3500° R 

0.088 
0.020 



Parameter I One loop 

Radlator coolant He 

Yaximum r a d l a t o r  pressure atm 680 

Merage r a d l a t o r  temperature OR 2 360 

Radiator surface a r e a  f t 2  50 800 

Radlator p l a n f o m  area  f t 2  25 600 

Two loop .A 
Radiator weight Ib 407 800 231 400 

Heat exchanger weight 1 1 - -  1 7 1  700 1 
Total  heat  rejectLon system l b  1407 800 I403 100 I 

TABLE 4 Wl REJECTION SYSTEM CfJARACTERISTICS 

Minmum welght configurations Welght, 1h 

Cavlty Reflector  Cavlty Reflector-  Fressure Radiator Total  
d l m e t e r ,  thiclmess, pressure,  moderator v e s s e l  

f L ft atm 

1 4  1.65 254 209 000 82 000 230 000 521 000 

12 1 .85  3 50 184 000 87 000 267 000 538 000 

10 2 . 5  450 204 200 97 000 507 000 608 200 

TAaE 5 COMPON3XVT WEIGHTS OF SELECTED mACL'OR CONTIGURAICIOWS 
WITH Be0 RElZECTOR-M0DEWi.TOB.S 

IAULE 6 E1FEC.T OF SEPWlED Mo ON C0bIPONE;NT WEIGIIlS OF SELECTED mACTOR CONFIGURATIONS 
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EXCHANGER & 

" CONTROLS 

Figure 1. - Schematic of the  open-cycle gas-core reactor engine 
not t o  scale. 

To heat rejection system 

I 

Typical moderator 
coolant passage - 

Figure 2. - Schematic of open-cycle gas-core reactor. 



He l i um moderator 
coolant 

F igure  3. - Schematic of a sect ion of t h e  open 

reactor conf igura t ion w i t h  hydrogen propel lant at 
1 9 0 0 ~  R and 400 atm. 
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Figure 5. - Variation of reactivity change wi th  hydrogen 
pressure for reference reactor configuration. 

r l  FUEL E D G E  

Figure 6. - Calculational model representa- 
t ion of the  hydrogen propellant tempera- 
t u r e  distr ibut ion i n  the cavity of a 10 foot 
diameter, 400 atm pressure, 44 200 pound 
thrust, 4400 second specific impulse gas 
core reactor. 
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CRITICAL FUEL LOADING, KG URANIUM (0.98 uB5) 

NET REACTIVITY WORTH OF FUEL + HYDROGEN, % Aklk PER KG URANIUM 
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Figure U. - Variation of component weights with cavity 
pressure for the reference reactor configuration with a 
cavity diameter of 14 feet and a Be0 reflector-moderator. 




